
Symbolic synthesis of indifferentiability attacks
Itsaka Rakotonirina

itsaka.rakotonirina@mpi-sp.org

MPI-SP

Miguel Ambrona

mac.ambrona@gmail.com

Alejandro Aguirre

alejandro@cs.au.dk

Aarhus University

Gilles Barthe

gjbarthe@gmail.com

MPI-SP, IMDEA Software Institute

ABSTRACT
Wepropose fully automatedmethods for synthesising attacks against

indifferentiability, a powerful simulation-based notion of security

commonly used to reason about symmetric constructions. Our

methods are inspired from symbolic cryptography which is popular

to reason about, e.g., cryptographic protocols. For that, we introduce

a core programming language for algebraic distinguishers and study
the class of universal distinguishers, who win the indifferentiability

game against every simulator; then, we show that the universality

of algebraic distinguishers can be reduced to solving systems of

algebraic, deducibility and static-equivalence constraints.

Our approach is implemented in a tool, AutoDiff, which solves

these constraint systems, and applies heuristics to automate the

cryptanalysis (i.e., to search automatically for universal distinguish-

ers). We evaluate the tool with many non-trivial attacks from the lit-

erature on Feistel networks and Even-Mansour blockciphers among

others. Our tool is able to check the validity these attacks, and in

many cases to synthesise themwithout guidance. To our knowledge,

AutoDiff is the first practical tool for indifferentiability attacks.

CCS CONCEPTS
• Security and privacy → Logic and verification; Block and
stream ciphers; Cryptanalysis and other attacks.

KEYWORDS
formal methods, computer-aided cryptography, indifferentiability

ACM Reference Format:
Itsaka Rakotonirina, Miguel Ambrona, Alejandro Aguirre, and Gilles Barthe.

2022. Symbolic synthesis of indifferentiability attacks. In Proceedings of
the 2022 ACM ASIA Conference on Computer and Communications Security
(ASIACCS’22), May 30–June 3, 2022, Nagasaki, Japan. ACM, New York, NY,

USA, 15 pages.

1 INTRODUCTION
Algebraic cryptanalysis is a general set of techniques for reducing

the (in)security of symmetric cryptographic constructions to solv-

ing systems of equations. However, the size and complexity of these

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ASIACCS’22, May 30–June 3, 2022, Nagasaki, Japan
© 2022 Association for Computing Machinery.

equations make their manual resolution at best unwieldy. To ad-

dress this bottleneck, cryptanalysts have built tools that search for

attacks [Cou03, CM03, BPW06, BDF11, Leu12, DF16, SSD
+
18] and

this approach has been successfully applied to find vulnerabilities

against many block ciphers. However, these tools are focused on

indistinguishability-based notions of security, and cannot be used

for analysing other standard notions of security.

One such popular notion is indifferentiability [MRH04, RSS11],

which was typically regarded as an important criterion for the

NIST selection of SHA-3 [BDPVA08]. The prime purpose of indif-

ferentiability is to support compositional analysis of cryptographic

constructions. To this end, it is stated as a simulation-based notion

of security, relating a real cryptographic component 𝐶 to another

ideal component 𝑅. Informally, it guarantees that𝐶 can be replaced

by 𝑅 in a larger system for the security analysis of a so-called

single-stage security game. In practice, indifferentiability is defined

through a game between a distinguisher 𝐷 and a real or ideal oracle:
(1) the real oracle system is the actual component 𝐶 built from a

set of smaller ideal components 𝑄 , and

(2) the ideal system is a random function 𝑅 and a simulator 𝑆 that

simulates the small components of 𝑄 by interacting with 𝑅.

The security game consists of the distinguisher attempting to cor-

rectly guess against which of the two systems it plays (see Figure 1).

The classical notion of indifferentiability states that there is a simu-

lator 𝑆 , s.t. any distinguisher 𝐷 can only get a negligible advantage

in this game through a polynomial number of oracle calls.

Figure 1: Indifferentiability security experiment

Indifferentiability is a common target property for symmetric

cryptographic constructions, and has beenwidely studied for Feistel

networks [Fei73], Even-Mansour block ciphers [EM97], confusion

diffusion mechanisms [DSSL16], and Lai–Massey constructions.

Unfortunately, (dis)proving indifferentiability of these construc-

tions is tedious and error-prone, even more so than for the simpler

indistinguishability-based definitions. On the provable security

side for example, Coron et al. [CPS08] proved that the 6-round

ASIACCS’22, May 30–June 3, 2022, Nagasaki, Japan Itsaka Rakotonirina, Miguel Ambrona, Alejandro Aguirre, and Gilles Barthe

Feistel network was indifferentiable from a random permutation;

but Holensetein et al. [HKT10] pointed out two years later that

the proof was invalid. Follow-up works attempted to remedy this

flaw, resulting in a proof of indifferentiability for 8-round Feis-

tel networks [DS16]. Similar challenges have been faced for other

constructions, including Iterated Even-Mansour [LS13, DSST17].

On the cryptanalysis side, which is the focus of this paper, one

usually considers the stronger notion of universal attack, which
exhibit a distinguisher 𝐷 that can distinguish between the real and

ideal worlds for any possible simulator 𝑆 . Proving that a construc-

tion admits a universal distinguisher is theoretically stronger than

showing that it is not indifferentiable, yet most pen-and-paper at-

tacks indeed exhibit a universal distinguisher. However, should it be

for standard or universal differentiability, techniques from algebraic

cryptanalysis do not appear as a natural fit: the simulation-based

nature of the notion makes it unlikely to reduce the attack search

to solving a simple system of algebraic equations. One key hurdle

is to identify a richer set of constraints that can accommodate the

universal quantification over all simulators.

In this paper, we put forward the use of richer constraints bor-

rowed from symbolic cryptography [KM07, BCK09, BGJ
+
19]. This

approach, which can be traced back to the seminal work of Dolev

and Yao [DY81], uses a simplified model where cryptographic prim-

itives are modelled algebraically, by means of equations that ide-

alise their effects: for instance, encryption is typically modelled

by two constructors for encryption and decryption, and an equa-

tion for encryption-decryption cancellation. The algebraic nature

of the symbolic model fosters automation, as security analyses in

this context are thus able to leverage standard techniques from

unification theory such as deducibility or static equivalence as

in [Bau07, CCD13, BGJ
+
19], whose decidability has been exten-

sively studied [AC06, ACD07, BCLD07, CDK12].

Contributions
This paper presents AutoDiff, the first automated tool for checking

and finding attacks (i.e., universal distinguishers) against the indif-

ferentiability of cryptographic constructions. AutoDiff supports the

validity of many non-trivial attacks from the literature, and also

(re)discovers automatically several of them. For that:

(1) We introduce a syntax for algebraic distinguishers, a restricted

class of distinguishers that encompasses many indifferentiabil-

ity attacks from the literature;

(2) We show that for a candidate distinguisher expressed in our

our syntax, universality can be reduced algorithmically to in-

solvability of a constraint system. They combine in a novel way

standard notions of symbolic constraints, including algebraic

equations but also deducibility constraints and static equivalence.
(3) Relying on a backend solving of our constraint systems, we

develop heuristics searching for violations of indifferentiability

automatically. We implemented a prototype, AutoDiff, and eval-
uated it on frameworks such as Feistel networks, Even-Mansour
ciphers, orMerkle-Damgård constructions. Our results show that

AutoDiff can verify many non-trivial attacks from the literature,

and in many cases retrieve them.

Related work
Dolev-Yao models. Our work leverages many techniques initially

designed for analysing cryptographic protocols in symbolic models.

These techniques originate from the seminal work of Dolev and

Yao [DY81] and are primarily characterised by an idealisation of

the attacker’s deducing capabilities, so that they can be described

in purely algebraic terms. This algebraic view allows a direct con-

nection to logic, which is highly beneficial for automation. The

symbolic model has been used extensively for analysing crypto-

graphic protocols, both for proving security and for discovering

logical flaws; for some recent examples, see, e.g., [BBK17, BDH
+
18,

CHH
+
17, JK21]. One common approach is to translate the pro-

tocol into a set of algebraic intruder constraints [Bau07, DLLT08,
CR10, DKP12, CCD13, CKR18], hence reducing the insecurity prob-

lem to the verification of symbolic notions such as deducibility

or static equivalence [AC06, BCLD07, CDK12]. We use the same

notion of constraint, and leverage existing work on constraint solv-

ing [AC06, Bau07, ACD07, DLLT08, CR10, CD12, CDK12, DKP12].

Computational soundness. We also uses techniques of compu-

tational soundness, i.e., that relate security in the symbolic and

computational models. This line of work, initiated by Abadi and

Rogaway [AR07] and further developed in a long series of works,

including [KM07, CLC08, BCK09, CKW11], heavily relies on some

of the tools used by our approach. We use in particular the results

of [BCK09]. Interestingly for our work, the usual theories of XOR

(present in most of the constructions we analyse) are known to

be incompatible with computational soundness in general, at least

for an unbounded number of symbolic operations [Unr10]. This

justifies in particular our restriction to distinguishers performing a

bounded number of operations (which is a key assumption in the

proof of our main theorem, and we show in Appendix 6.2 that a

minimal unbounded extension of our framework is unsound).

Variations of the approach. Alternatives to computational sound-

ness are symbolic methods for reasoning about computational secu-

rity. They are often specialised to a specific problem: padding-based

encryption [CDE
+
08, BCG

+
13], symmetric encryption [MKG14,

HKM15, Mea20], pairing-based, orlattice-based security [BGS15,

BFG
+
18]. These works have very different goals from ours (indistin-

guishability proofs vs. indifferentiability attacks), but there is partial

overlap in the constraint solving techniques used in the backend—

the closest relationship being with Meadows [Mea20]. Yet another

approach similar to ours is what has been developed in the generic

groupmodel (GGM) and its variants [Nec94, Sho97, BBG05, Mau05].

They are, in short, idealised models to reason about lower and

upper bounds of group-based algorithms, such as those to solve

discrete logarithm. Typically, some works based on these models

use constraints to automate analyses in the GGM [BFF
+
14, ABS16,

ABGW17]: as us, they generate constraints that are then solved by

general-purpose tools. However, the notion of constraint they rely

on is simpler than ours, e.g., it does not involve static equivalence.

2 INDIFFERENTIABILITY FROM RANDOM
2.1 Algorithms
Formalism. Throughout the paper, we refer to the following no-

tion of (randomised) algorithm 𝐴 : 𝑋 → 𝑌 to model program

Symbolic synthesis of indifferentiability attacks ASIACCS’22, May 30–June 3, 2022, Nagasaki, Japan

executions. An algorithm 𝐴 is specified as a probabilistic transition

system→𝐴 over a chosen set of states S. This includes input states
input(𝑥), 𝑥 ∈ 𝑋 , and output states output(𝑦), 𝑦 ∈ 𝑌 . We only as-

sume that for all states 𝑠 ∈ S, the set {𝑠 ′ ∈ S | 𝑠 →𝐴 𝑠 ′} of successors
of 𝑠 is finite (and empty iff 𝑠 is an output state). An execution of

𝐴(𝑥) is then simply a sequence of transitions from input(𝑥) to some

output(𝑦). In the vein of probabilistic Turing machines, algorithms

are randomised in that the state following 𝑠 in an execution is picked
uniformly at random from all possible successors (independently

of previous execution steps). The algorithm is deterministic if each
state has at most one successor; note in particular that any function

𝐹 can be interpreted as a trivial deterministic algorithm with transi-

tions input(𝑥) →𝐹 output(𝐹 (𝑥)). The probability of an execution

from input(𝑥) reaching output(𝑦) is then written

Pr[𝐴(𝑥) = 𝑦] .

To model security games, we also consider algorithms that are

parametrised by the execution of another one. For that we say that

𝐴 has oracle access to a terminating algorithm 𝑅 (which is made

explicit with the notation𝐴𝑅
) if on certain statesQ ⊆ S called query

states, 𝐴 stops its normal execution, runs a probabilistic execution

of some 𝑅(𝑥) instantly, and chooses its next state depending on the

output state of 𝑅—after which the execution of 𝐴𝑅
resumes.

Constructions. We specifically operate over the group𝐺 = {0, 1}[
of bitstrings of length [equipped with exclusive or (xor, ⊕). The
integer [is called the security parameter, which is a caliber for

probabilistic security properties. A function 𝐹 : 𝐺𝑝 → 𝐺𝑞
is also

called a keyed permutation when 𝑝 ⩾ 𝑞 and there exists a function

𝐹 −1

: 𝐺𝑝 → 𝐺𝑞
, called its inverse, such that for all x ∈ 𝐺𝑞, y ∈ 𝐺𝑝−𝑞

,

𝐹 −1 (𝐹 (x, y), y) = x and 𝐹 (𝐹 −1 (x, y), y) = x .

If 𝑄 is a set of functions, 𝑄∗ ⊆ 𝑄 is the set of keyed permutations

of 𝑄 . A construction 𝐶𝑄
is an algorithm with oracle access to the

functions of 𝑄 , called primitives, and to the inverses 𝐹 −1

, 𝐹 ∈ 𝑄∗. A
primitive is always ideal (or random), i.e., it is formally a distribution
of functions, here the uniform distribution over all functions, or all

keyed permutations, of adequate domain. The effective oracle 𝐹 is

then sampled from this distribution. By abuse of vocabulary, we

will talk about ideal functions as if they were actual functions.

2.2 The indifferentiability game
Our formalisation is based on [DS16]. Indifferentiability expresses

the impossibility to tell apart a construction 𝐶𝑄
and an ideal func-

tion 𝑅 with significant probability, using the following key notion:

Definition 2.1 (distinguisher). A distinguisher 𝐷 is an algorithm

that initiates a bounded number 𝑞 ∈ N of queries to a collection of

oracles (and possibly to their inverses for the keyed permutations

among them), and eventually outputs 0 or 1.

In practice, the security experiment for indifferentiability is a

game where a distinguisher is given oracle access to either:

(1) the construction 𝐶𝑄
and the ideal primitives 𝑄 (real world),

(2) or a random function 𝑅 and a simulation of𝑄 (simulated world),
and needs to guess which of the two oracle systems it interacts

with. When it succeeds to do so, 𝐷 is said to win the indifferentia-
bility game. Rephrasing, for indifferentiability to hold, it should be

possible to simulate the behaviour of the ideal primitives 𝑄 from

a random function 𝑅, in a way that no distinguishers call tell a

difference between the real construction and the simulated one.

Definition 2.2 (indifferentiability). Let 𝐶𝑄
be a construction and

𝑅 be an ideal function (keyed permutation if𝐶𝑄
is one). We say that

𝐶𝑄
is indifferentiable if there exist a polynomial 𝑡𝑆 ([, 𝑞), and Y ([, 𝑞)

negligible in [such that, for every 𝑞 ∈ N, there exists a randomised

algorithm 𝑆𝑅 (called a simulator) running in time 𝑡𝑆 ([, 𝑞) such that

for all distinguishers 𝐷 making at most 𝑞 oracle queries,���Pr[𝐷𝐶𝑄 ,𝑄 = 1] − Pr[𝐷𝑅,𝑆𝑅 = 1]
��� ⩽ Y ([, 𝑞)

where probabilities account for the sampling of ideal functions.

We recall that 𝑓 ([) being negligible means that for any 𝑛 ∈ N,
there exists [0 such that, for every [⩾ [0, 𝑓 ([) ⩽ [−𝑛 . On the

contrary, 𝑓 ([) is overwhelming if 1 − 𝑓 ([) is negligible. Note also
that, in the above definition, the simulator is only tasked to simulate

the oracle calls of 𝐷 to the primitives 𝑄 , whereas the calls to the

main oracle 𝐶𝑄
and its potential inverse (𝐶−1)𝑄 are automatically

simulated by 𝑅 and 𝑅−1

.

In the original definition of indifferentiability, simulators are

stateful programs and may thus hold information from one query

to another. To account for this fact in a lightweight manner, we

assume for simplicity that, on every query, 𝑆 implicitly receives the

list of all past queries made to it.

2.3 Universal differentiability
Strictly speaking, disproving indifferentiability requires to show

that, for all simulators 𝑆 , there exists a distinguisher 𝐷 telling apart

the real and simulated worlds with significant probability. It is

however more convenient to exhibit one single distinguisher 𝐷
(qualified as universal) that has a non-negligible advantage in the

security game against all possible simulators 𝑆 .

Definition 2.3 (universal distinguisher). A distinguisher 𝐷 is said

to be universal against a construction 𝐶𝑄
if, for all simulators 𝑆

running in polynomial time in the security parameter [, we have

for some non-negligible function Y : N→ R:���Pr[𝐷𝐶𝑄 ,𝑄 = 1] − Pr[𝐷𝑅,𝑆𝑅 = 1]
��� ⩾ Y ([)

Proposition 2.4 (universal differentiability). If there exists
a universal distinguisher 𝐷 against a construction 𝐶𝑄 , then 𝐶𝑄 is
differentiable from a random function.

In theory, this characterisation is a sufficient but not necessary

condition. There might exist constructions that are not indifferen-

tiable from a random function, but that cannot be differentiated

by any fixed algorithm 𝐷 . To the best of our knowledge however,

the existence of such constructions is an open problem. In practice,

the standard approach for disproving indifferentiability therefore

remains to exhibit a universal distinguisher, as evidenced by at-

tacks on various high-profile block ciphers such as 5-round Feis-

tel networks [CHK
+
16], 4-round iterated Even-Mansour ciphers

[DSST17], Merkel-Damgård or 2-round confusion-diffusion net-

works [DSSL16]. Our goal is to automate the verification of univer-

sality for a class of distinguishers encompassing these attacks.

ASIACCS’22, May 30–June 3, 2022, Nagasaki, Japan Itsaka Rakotonirina, Miguel Ambrona, Alejandro Aguirre, and Gilles Barthe

2.4 Examples of constructions
The two simplest constructions we can conceive are the following

ones, given a primitive 𝐹 : 𝐺 → 𝐺 :

𝐶1 (𝑥) = 𝐹 (𝑥) 𝐶2 (𝑥) = 𝑥

The construction 𝐶1 is by definition an ideal function: no distin-

guisher can win the security game against the simulator that simu-

lates a query to 𝐹 (𝑥) by a call to𝑅(𝑥). On the contrary,𝐶2 is trivially

differentiable: consider the distinguisher 𝐷 that (1) samples a group

element 𝑥 ∈ 𝐺 uniformly at random; (2) calls the main oracle on

𝑥 , and thus obtains 𝑦 = 𝑥 in the real world and 𝑦 = 𝑅(𝑥) in the

simulated world; and (3) returns 1 iff 𝑥 = 𝑦. Then 𝐷 wins the secu-

rity game with overwhelming probability against any simulator 𝑆 .

Let us now introduce more complex constructions that will serve

as running examples throughout the paper and primary targets of

interest for our prototype analyser.

Feistel networks. A 𝑘-round Feistel network [Fei73] is a sym-

metric block cipher 𝐶 : 𝐺2 → 𝐺2
illustrated in Figure 2 and used

among others in standards such as PKCS [BR94, FOPS01].

Figure 2: 𝑘-round Feistel network

The construction receives the inputs (𝑥0, 𝑥1) and returns the

outputs (𝑥𝑘 , 𝑥𝑘+1) by iterating the following computation:

𝑥𝑖+1 = 𝑥𝑖−1 ⊕ 𝐹𝑖 (𝑥𝑖),
using the primitives 𝐹𝑖 : 𝐺 → 𝐺 , 𝑖 ∈ [1, 𝑘]. For instance, for 3

rounds, the first output of 𝐶 is 𝑥3 = 𝑥1 ⊕ 𝐹2 (𝑥0 ⊕ 𝐹1 (𝑥1)).
Feistel networks have the convenient property of being invert-

ible due to the cancellation property of ⊕, and are therefore used to
build invertible pseudorandom permutations from (non-invertible)

pseudorandom primitives. One desired security property is hence

that their structure preserves the randomness of the atomic func-

tions 𝐹𝑖 , which is formalised by the indifferentiability of 𝐶 .

Even-Mansour ciphers. A 𝑘-round (iterated) Even-Mansour ci-

pher [EM97], a symmetric block cipher 𝐶 : 𝐺2 → 𝐺 (Figure 3). On

inputs (𝑥,𝑦), the construction performs 𝑘 applications of primitives

𝑃𝑖 : 𝐺 → 𝐺 to 𝑥 , each preceded and followed by a mask using a

same key 𝑦. The primitives 𝑃𝑖 are assumed to be invertible.

x …P1 P2 Pk

y

Figure 3: 𝑘-round Iterated Even-Mansour cipher

The overall construction 𝐶 is therefore a keyed permutation.

That is, we can define 𝐶−1

: 𝐺2 → 𝐺 such that for all 𝑥,𝑦 ∈ 𝐺 ,
𝐶 (𝐶−1 (𝑥,𝑦), 𝑦) = 𝑥 𝐶−1 (𝐶 (𝑥,𝑦), 𝑦) = 𝑥

3 ALGEBRAIC DISTINGUISHERS
The distinguishers we consider will be restricted to operations that

can be abstracted by uninterpreted symbols and algebraic equations.

This way, negligible biases in probabilistic events can be filtered out

from analyses, making automation simpler. The resulting formalism

borrows much from the applied pi-calculus [ABF17], a symbolic

model often used in the analysis of cryptographic protocols.

3.1 Symbolic model of group computations
We recall that we focus on constructions on the group 𝐺 = {0, 1}[
of [-bitstrings. We model them symbolically by a set of atomic data:

A = Cst ⊎ Rnd ⊎ Vars1

Elements of Rnd (random group elements) represent values sam-

pled by the distinguisher (and therefore cannot be guessed by the

simulator with non-negligible probability). On the contrary, ele-

ments of Cst (constant group elements) model fresh values that the

simulator may generate during its simulation. Elements of Vars1

(first-order variables, or simply variables) are used as placeholders

for other computations. A term without variables is called ground.
Operations over atomic data are then modelled by function symbols
𝐹 , that are abstract uninterpreted symbols tagged with an in-arity
𝑝 > 0 and an out-arity 𝑞 > 0 indicating how many arguments they

take and return. We write 𝐹 : 𝐺𝑝 → 𝐺𝑞
to express this fact. These

symbols are then gathered into so-called signatures:

F = Fun ⊎Orcl .
Symbols of Fun model the operations such as ⊕ used for building

the construction and distinguishers, whereas symbols ofOrcl, called
oracle symbols, model the various oracles of the security game.

Definition 3.1 (first-order term). Lists of first-order terms t (or
simply “terms” for short) are obtained by applying function symbols

to atomic values or other terms, accordingly to their arities. We also

extend the notion of arity through the following inference rules:

𝑥 ∈ A
𝑥 : 𝐺

t1 : 𝐺𝑝 t2 : 𝐺𝑞

t1, t2 : 𝐺𝑝+𝑞
t : 𝐺𝑝 𝐹 : 𝐺𝑝 → 𝐺𝑞

𝐹 (t) : 𝐺𝑞

We write T (𝑆) the set of terms t : 𝐺𝑝
, 𝑝 ∈ N, constructable from

the symbols and atomic data of 𝑆 ⊆ F ∪ A. Similarly to function

symbols, 𝑝 is called the arity of t : 𝐺𝑝
.

First-order terms are classically used in symbolic models to rep-

resent computations [ABF17]. Here they specifically model those

of the distinguisher: for example if the symbol C : 𝐺 → 𝐺 stands

for the main oracle of the security game, ⊕ : 𝐺2 → 𝐺 for xor (with

infix notation), and 𝑥,𝑦 ∈ Vars1
, the termC(𝑥) ⊕𝑦 : 𝐺 models a call

to the main oracle on 𝑥 , summed with 𝑦. The functional properties

of these symbols (e.g., commutativity of xor) are then modelled

by a classical notion of equational theory below. First, we call a

substitution 𝜎 a mapping from variables to terms of arity 1, written

𝜎 = {𝑥1 ↦→ 𝜎 (𝑥1), . . . , 𝑥𝑝 ↦→ 𝜎 (𝑥𝑝)}
and homomorphically extended to functions from terms to terms.

We may write it in the more succinct manner 𝜎 = {x ↦→ t} with
x = 𝑥1, . . . , 𝑥𝑝 and t = 𝜎 (𝑥1), . . . , 𝜎 (𝑥𝑝), and note dom(𝜎) = {x}
the domain of 𝜎 . We also often use the standard postfix notation 𝑡𝜎

instead of 𝜎 (𝑡). This permits us to define:

Symbolic synthesis of indifferentiability attacks ASIACCS’22, May 30–June 3, 2022, Nagasaki, Japan

Definition 3.2 (theory). An equational theory E over a signature

F is a set of pairs 𝑢, 𝑣 ∈ T (Vars1 ∪ Fun), 𝑢 and 𝑣 of same arity,

called equations and written 𝑢 =E 𝑣 . The relation =E is closed

by substitution and context, that is, it is extended to the smallest

equivalence relation containing E and verifying the inference rules:

𝑢 =E 𝑣

𝑢𝜎 =E 𝑣𝜎

t1 =E u1 t2 =E u2

t1, t2 =E u1, u2

t =E u

𝐹 (t) =E 𝐹 (u)
In this paper, the pair (F , E) is called a theory.

3.2 Reference theory
From now on, we operate within what we call the reference theory,
defined in Figure 4. It models the security game for a construction

𝐶𝑄
: 𝐺𝑝in → 𝐺𝑝out

, that is assumed to be definable in the reference

theory, that is, as a function from terms to terms. Intuitively, the

function symbols of the theory (Fun) model xor and projections,

while its oracle symbols (Orcl) represent primitives of𝑄 (interpreted

as function symbols), the main oracle C (i.e., 𝐶𝑄
in the real world

and an ideal function 𝑅 in the simulated world), and their potential

inverses referred to as specific symbols 𝐹 −1

. In particular, we define

Orcl0 = 𝑄 ∪ {C : 𝐺𝑝in → 𝐺𝑝out }

the set of the direct oracles of the security game, and Orcl is ob-
tained in Figure 4 by adding inverse symbols to it. By abuse of

notations, given 𝐸 ⊆ Orcl0, we write 𝐸∗ the set of the symbols of 𝐸

corresponding to keyed permutations.

Fun = {0 : 𝐺, ⊕ : 𝐺2 → 𝐺} ∪ {𝜋𝑖/𝑝 : 𝐺𝑝 → 𝐺 | 0 < 𝑖 ⩽ 𝑝}
Orcl = Orcl0 ∪ {𝐹 −1 | 𝐹 ∈ Orcl∗

0
}

𝑥 ⊕ 0 =E 𝑥 𝑥 ⊕ 𝑥 =E 0 𝑥 ⊕ 𝑦 =E 𝑦 ⊕ 𝑥

(𝑥 ⊕ 𝑦) ⊕ 𝑧 =E 𝑥 ⊕ (𝑦 ⊕ 𝑧)
𝜋𝑖/𝑝 (𝑥1, . . . , 𝑥𝑝) =E 𝑥𝑖 for 𝑖, 𝑝 ∈ N∗, 𝑖 ⩽ 𝑝

𝜋
1/𝑞 (𝐹 (x)), . . . , 𝜋𝑞/𝑞 (𝐹 (x)) =E 𝐹 (x) for (𝐹 : 𝐺𝑝 → 𝐺𝑞) ∈ Orcl

𝐹 −1 (𝐹 (x, y), y) =E x for 𝐹 ∈ Orcl∗
0

𝐹 (𝐹 −1 (x, y), y) =E x for 𝐹 ∈ Orcl∗
0

Figure 4: Reference theory of the paper

3.3 Specifying algebraic distinguishers
Syntax. We now define a grammar for distinguishers that only

perform computations that can be expressed in the reference theory:

𝐷 ::= 𝐷 + 𝐷 convex combination

𝑃 program

𝑃 ::= x← 𝐹 (t); 𝑃 query

return 𝜑 return

𝜑 ::= 𝑢 =? 𝑣 𝜑 ∧ 𝜑 ¬𝜑 test

where (𝐹 : 𝐺𝑝 → 𝐺𝑞) ∈ Orcl, x is a list of 𝑞 distinct variables,

t, 𝑢, 𝑣 ∈ T (Fun∪Vars1∪Rnd) with t : 𝐺𝑝
and𝑢, 𝑣 are of same arity.

For succinctness we write 𝑢 ≠? 𝑣 instead of the formula ¬(𝑢 =? 𝑣).

Definition 3.3 (distinguisher code). A distinguisher code 𝑐 is an
object derived from the token 𝐷 in the above grammar. We say that

𝑐 is non-branching if it does not contain + operators.

Intuitively, x← 𝐹 (t) is used to query the oracle 𝐹 on some inputs

t. The term tmay contain random group elements (Rnd), modelling

the uniform sampling of some bitstrings. The final return 𝜑 eval-

uates a test over bitstrings as the output of the algorithm (1 if

satisfied, 0 otherwise). Finally, the probabilistic branching operator

𝑐1 + 𝑐2 executes either 𝑐1 or 𝑐2 with probability
1

2
. This introduces

uncertainty on the simulator’s side, which receives queries without

knowing in general which branch is effectively being executed.

The syntax is presented in a theoretically-minimal form to lighten

the framework, but convenient syntax extensions can easily be en-

coded. For instance, branching may be allowed not only at toplevel

but at any point of the code, encoding 𝑞; (𝐷 +𝐷) by (𝑞;𝐷) + (𝑞;𝐷 ′).
Another common mechanism is the use of instructions assert 𝜑 ; 𝑐

that start building the final test of the distinguisher during the code.

Semantics. We now formalise how to interpret a code 𝑐 as an

actual distinguisher, that is, an algorithm 𝐷 = J𝑐K returning values

of {0, 1}. We make explicit which oracles 𝐷 may take by writing

explicitly J𝑐K𝜔 , where 𝜔 is called an oracle system, that is a token

𝜔 ∈ {real, sim(𝑆) | 𝑆 simulator}

indicating in which world the code 𝑐 is being executed. Referring

to Section 2.1, we thus have to define a transition system →𝐷

modelling the execution of the code 𝑐 with oracle system 𝜔 . Its set

of states S will contain the following elements:

input(𝑐) 𝑐 code

output(𝑏) 𝑏 ∈ {0, 1}
(𝑐, 𝜎) 𝑐 code, 𝜎 : Vars1 ∪ Rnd→ 𝐺

In a state (𝑐, 𝜎), the code 𝑐 simply indicates the remaining instruc-

tions to execute. In particular, the query states are those of the form

(x← 𝐹 (t); 𝑐, 𝜎). The mapping 𝜎 models the execution store, that is,
it indicates to which bitstring corresponds each symbolic atomic

data. We will allow our distinguisher to have access to a family of

algorithms implementing the oracle system 𝜔 , as defined below.

Definition 3.4 (implementation). A family of algorithms O =

{O𝑔}𝑔∈Orcl implements the oracle system 𝜔 when each O𝑔 operates
on tuples of bitstrings accordingly to the arity of 𝑔, and:

(1) if 𝜔 = real then it holds that:

(a) ∀𝐹 ∈ Orcl∗
0
, O𝐹 is a keyed permutation and O−1

𝐹
= O𝐹−1 ;

(b) OC = 𝐶 {O𝐹 |𝐹 ∈𝑄 } ;
(2) if 𝜔 = sim(𝑆), writing 𝑄 ′ = 𝑄 ∪ {𝐹 −1 | 𝐹 ∈ 𝑄∗}, we derive

from 𝑆 a collection of simulators 𝑆𝐹 , respectively answering to

queries to 𝐹 ∈ 𝑄 ′, and it should hold that:

(a) ∀𝐹 ∈ 𝑄 ′, O𝐹 = 𝑆
OC
𝐹

;

(b) if 𝐶𝑄
is a keyed permutation, then OC is a keyed permuta-

tion as well and O−1

C = OC−1 .

Putting everything together, we define in Figure 5 the transition

relation on states that model the executions of distinguisher codes.

The figure uses the following notations:

ASIACCS’22, May 30–June 3, 2022, Nagasaki, Japan Itsaka Rakotonirina, Miguel Ambrona, Alejandro Aguirre, and Gilles Barthe

• given 𝑛 variables x = 𝑥1, . . . , 𝑥𝑛 and 𝑛 bitstrings t = 𝑡1, . . . , 𝑡𝑛 ,

𝜎 [x ↦→ t] is the store that coincide with 𝜎 on dom(𝜎) ∖ {x} and
that maps each 𝑥𝑖 to 𝑡𝑖 ;

• if 𝑡 ∈ T (Vars1 ∪ Rnd ∪ Fun), 𝑡𝜎 refers to the bitstring obtained

by applying 𝜎 homomorphically to 𝑡 , interpreting the functions

of Fun in the natural way as functions over bitstrings;

• if 𝜑 is formula (as those of the return statements of distinguish-

ers), 𝜑𝜎 ∈ {0, 1} is the result of the evaluation of 𝜑 (1 meaning

“satisfied”), interpreting =?

as bitstring equality.

input(𝑐) → (𝑐, 𝜎) (Init)

(𝑐1 + 𝑐2, 𝜎) → (𝑐1, 𝜎) (Left)

(𝑐1 + 𝑐2, 𝜎) → (𝑐2, 𝜎) (Right)

(x← 𝐹 (t); 𝑐, 𝜎) → (𝑐, 𝜎 [x ↦→ O𝐹 (t𝜎)]) (Query)

(return 𝜑, 𝜎) → output(𝜑𝜎) (Return)

Figure 5: Semantics of the code 𝑐 with oracle access to O

Intuitively, Rule (Init) samples a store, thus modelling the fact

that random group elements are sampled uniformly at random.

Rules (Left) and (Right) simply execute one branch among the

possible two with probability
1

2
. Rule (Query) executes a query by

calling to the oracles initialised consistently by Rule (Init), and

finally Rule (Return) concludes the algorithm by evaluating the

test 𝜑 in the store as expected. All in all we obtain:

Definition 3.5 (code semantics). Given a distinguisher code 𝑐 , we

write J𝑐K for the corresponding distinguisher, i.e., the algorithm

that, with access to a family of oraclesO, is induced by the transition
system of Figure 5. Given 𝑏 ∈ {0, 1} and 𝜔 oracle system, we write:

Pr[J𝑐K𝜔 = 𝑏]

to refer to the probability Pr [J𝑐K = 𝑏] where J𝑐K has oracle access

to a family O implementing 𝜔 sampled uniformly at random from

the (finite) set of all such families. This sampling of O intuitively

corresponds to the sampling of ideal functions in the security game.

Algebraic distinguishers. Now that we have a formal syntax and

semantics for specifying distinguishers, we have characterised the

class of distinguishers we plan to study in this paper.

Definition 3.6 (algebraic). A distinguisher 𝐷 is algebraic if 𝐷 =

J𝑐K for some code 𝑐 and Pr [J𝑐Kreal = 1] is overwhelming.

Proposition 3.7 (algebraic differentiability). If 𝐷 = J𝑐K is
an algebraic distinguisher, the following points are equivalent:

(i) 𝐷 is universal
(ii) for all simulators 𝑆 running in polynomial time in the security

parameter [, Pr [J𝑐Ksim(𝑆) = 1] is non-overwhelming

Example 3.8. Let us go back to the running example of Feistel

networks we introduced in Section 2.4. Consider the case where 𝐶

is a 3-round network. Figure 6 presents two distinguisher’s codes

against𝐶 , Daisy and David. The only difference between the two is

the order of their queries.

Daisy:

1 𝑥1 ← 𝐹1 (𝑟1)
2 𝑥2 ← 𝐹2 (𝑟2)
3 𝑧, 𝑧′ ← C(𝑥1⊕𝑟2, 𝑟1)
4 return 𝑧 =? 𝑟1 ⊕ 𝑥2

David:

1 𝑥2 ← 𝐹2 (𝑟2)
2 𝑥1 ← 𝐹1 (𝑟1)
3 𝑧, 𝑧′ ← C(𝑥1⊕𝑟2, 𝑟1)
4 return 𝑧 =? 𝑟1 ⊕ 𝑥2

with 𝑟1, 𝑟2 ∈ Rnd

Figure 6: Two distinguishers for 3-round Feistel

First, we observe that the final test 𝜑 = (𝑧 =? 𝑟1 ⊕ 𝑥2) holds
in the real world with probability 1 since, by definition of Feistel

networks, if we write 𝑥𝑖 = 𝐹𝑖 (𝑟𝑖) and (𝑧, 𝑧′) = 𝐶𝑄 (𝑥1 ⊕ 𝑟2, 𝑟1):
𝑧 = 𝑟1 ⊕ 𝐹2 (𝑥1 ⊕ 𝑟2 ⊕ 𝐹1 (𝑟1))
= 𝑟1 ⊕ 𝐹2 (𝑟2)
= 𝑟1 ⊕ 𝑥2 .

In particular, both Daisy and David are algebraic. However, only the

latter is universal: using the characterisation of Proposition 3.7, it

means that there exists a simulator, Susan, that can answer Daisy’s

queries in a way that 𝜑 holds. Rephrasing, Susan has to compute,

with access to a random permutation 𝑅 : 𝐺2 → 𝐺2
, two bitstrings

𝑥1 and 𝑥2 that verify the relation

𝜋
1/2 (𝑅(𝑥1 ⊕ 𝑟2, 𝑟1)) = 𝑟1 ⊕ 𝑥2 (★)

where 𝑟1, 𝑟2 are two values sampled uniformly at random by Daisy

and David. In particular, Susan has a negligible probability of guess-

ing 𝑟1, 𝑟2, but obtains their values through queries. The only differ-

ence between Daisy and David is then what queries have effectively

been sent to Susan at the time she has to compute 𝑥1 and 𝑥2. For

example, when interacting with Daisy, Susan has already received

𝑟1 (argument of the first query) and 𝑟2 (argument of the second

query) at the time she has to compute 𝑥2. On the contrary, she

only received 𝑟2 when playing against David. It is then sufficient

to observe that, intuitively, it is not possible to compute a value

𝑥2 that satisfies relation (★) without knowing the values of both

𝑟1 and 𝑟2: this explains why Susan can win against Daisy but not

David. The next section formalises this intuition.

4 SYMBOLIC ANALYSIS OF UNIVERSALITY
We now characterise simulator’s constraints, thus formalising the

concepts outlined in Example 3.8. This is inspired from standard

notions in symbolic frameworks [Bau07, DLLT08, CCD13, CKR18].

4.1 Constraint systems
First-order terms were used to model the distinguisher’s compu-

tations; we introduce now a refined notion of second-order terms,

expressing the specific restrictions of the simulator (such as not

being able to guess random group elements sampled by the distin-

guisher). For that we first define frames, modelling the information

available to the simulator as a finite set of entries.

Definition 4.1 (frame). A frame is a substitution of the form

Φ = {ax1 ↦→ t1, . . . , ax𝑝 ↦→ t𝑝 }
where the domain of Φ consists of special variables from a dedicated

set Axioms = {ax𝑖 }𝑖∈N of so-called axioms, and the t𝑖 ’s are terms.

Symbolic synthesis of indifferentiability attacks ASIACCS’22, May 30–June 3, 2022, Nagasaki, Japan

As intuited above, frames model the simulator’s knowledge. Con-

sider for example a distinguisher sampling a bitstring 𝑟 and sending

the query 𝑥 ← 𝐹 (𝑟) to the simulator, which therefore receives the

value of 𝑟 . This is modelled by an entry ax𝑖 ↦→ (𝐹, 𝑟) recorded in

a frame, for some 𝐹 ∈ Cst identifying the primitive used. Thus,

although the simulator cannot guess the value of 𝑟 a priori, it will
be able to access it by reference, using the computation 𝜋

2/2 (ax𝑖).
More generally, the simulator’s computations are modelled by:

Definition 4.2 (second-order terms). If we consider the set Priv =

𝑄 ∪ {𝐹 −1 | 𝐹 ∈ 𝑄∗} ∪ Rnd, a second-order term b is a term of

T ((F ∪ A ∪ Axioms) ∖ Priv) .

We also consider a set of so-called second order variables Vars2 =

{𝑋,𝑌, 𝑍, . . .}, where each 𝑋 ∈ Vars2
has amultiplicity 𝑖 ∈ N, which

is sometimes made explicit by writing 𝑋 : 𝑖 .

A second-order variable 𝑋 : 𝑖 is thus a placeholder for a second-

order term—that is, a simulator’s computation—that may only use

the first 𝑖 values sent by the distinguisher. Consistently, we call

a second-order substitution Σ a mapping from second-order vari-

ables to second-order terms in a way that respects multiplicities,

that is, for all (𝑋 : 𝑖) ∈ dom(Σ), 𝑋Σ only contains axioms from

{ax1, . . . , ax𝑖 }. Using all of this, we can finally define constraint sys-
tems, that gather a frame (modelling the aggregated knowledge of

the simulator), deducibility constraints (expressing the simulator’s

ability to compute the answers it gives to queries), and a formula 𝜑

(indicating the relations that the simulated terms should verify).

Definition 4.3 (constraint system). A constraint system is a tuple

Γ = (Φ,D, 𝜑), where Φ is a frame, 𝜑 is a formula (as those used in

the return instructions of distinguisher codes), and D is a set of

so-called deducibility constraints 𝑋 ⊢? x (𝑋 ∈ Vars2
, x ∈ T (Vars1)).

Definition 4.4 (solution). A solution Σ of a constraint system

(Φ,D, 𝜑) is a second-order substitution such that there exists a

substitution 𝜎 (called a first-order solution of Σ) such that:

(1) Σ computes 𝜎 : ∀(𝑋 ⊢? x) ∈ D, 𝑋ΣΦ =E x𝜎
(2) the formula is satisfied: 𝜑𝜎 holds when interpreting =?

as =E

Example 4.5. Consider again our running example, and in partic-

ular, the distinguisher Daisy and David introduced in Example 3.8.

The task of a simulator playing against them is to answer to the

two queries in a way that the final test 𝜑 holds:

𝜋
1/2 (C(𝑥1 ⊕ 𝑟2, 𝑟1)) =? 𝑟1 ⊕ 𝑥2 (𝜑)

This is intuitively expressed by the two constraint systems ΓDaisy =

(Φ,D, 𝜑) and ΓDavid = (Φ′,D′, 𝜑), with 𝐹 ∈ Cst and:

Φ = {ax1 ↦→ (𝐹, 𝑟1), ax2 ↦→ (𝐹, 𝑟2)} D = {𝑋 : 1 ⊢? 𝑥1, 𝑌 : 2 ⊢? 𝑥2}
Φ′ = {ax1 ↦→ (𝐹, 𝑟2), ax2 ↦→ (𝐹, 𝑟1)} D′ = {𝑋 : 1 ⊢? 𝑥2, 𝑌 : 2 ⊢? 𝑥1}

The system ΓDavid has no solutions: computing a suitable value of

𝑥2 requires to have access to the values of both 𝑥1 and 𝑥2, whereas

ΓDavid requires to compute 𝑥2 only from 𝑟2. This reflects the fact

that David is universal. On the contrary, ΓDaisy has the following
solution, thus describing how a simulator can win against Daisy,

given an arbitrary constant 𝑐 ∈ Cst:

Σ = {𝑋 ↦→ 𝑐, 𝑌 ↦→ 𝜋
2/2 (ax1) ⊕ 𝜋1/2 (C(𝑐 ⊕ 𝜋2/2 (ax2), 𝜋2/2 (ax1)))}

4.2 Consistent solutions
So far we defined a notion of constraint systemmodelling the task of

the simulator against a given distinguisher. But against a branching

distinguisher 𝐷 = 𝐷1 + · · · +𝐷𝑛 , the simulator has to win against all
branches 𝐷𝑖 ; that is, 𝐷 is universal iff the constraint systems that

we will associate to each 𝐷𝑖 have no solutions. However, we also

have to account for the simulator’s uncertainty about the executed

branch. Indeed, consider for example, for 𝑟, 𝑠 ∈ Rnd:

𝐷 = 𝑥 ← 𝐹 (𝑟); 𝑦 ← 𝐹 (𝑠); 𝑃
𝐷 ′ = 𝑥 ← 𝐹 (𝑠); 𝑦 ← 𝐹 (𝑟 ⊕ 𝑠); 𝑃 ′

From the point of view of the simulator, the first two queries of 𝐷

and𝐷 ′ both appear as 𝐹 -evaluations on two random group elements.

When playing against𝐷+𝐷 ′, the simulator hence cannot infer from

them, with significant probability, whether it is interacting with

the branch 𝐷 or 𝐷 ′. It will in particular have to answer identically

when interacting with either of them. Exploits of this mechanism

can be found, e.g., in the attack on 4-round Even-Mansour ciphers

from [DSST17]. We formalise this notion of branch indistinguisha-

bility by the classical notion of static equivalence [AC06].

Definition 4.6 (static equivalence). Let Φ and Ψ be two frames.

We say that they are statically equivalent, written Φ ∼ Ψ, if

(1) dom(Φ) = dom(Ψ)
(2) for all ax𝑖 ∈ dom(Φ), if ax𝑖Φ : 𝐺𝑝

then ax𝑖Ψ : 𝐺𝑝

(3) for all second order terms b, Z , we have bΦ =E ZΦ iff bΨ =E ZΨ

Example 4.7. In the distinguishers 𝐷 and 𝐷 ′ described above, the
simulator cannot distinguish between the first two queries of the

two branches, which is modelled by the static equivalence of

Φ𝐷 = {ax1 ↦→ (𝐹, 𝑟), ax2 ↦→ (𝐹, 𝑠)}
Φ𝐷′ = {ax1 ↦→ (𝐹, 𝑟), ax2 ↦→ (𝐹, 𝑟 ⊕ 𝑠)}

where 𝐹 ∈ Cst is a token modelling that a query to the function 𝐹

has been made. If we consider, instead, a distinguisher 𝐷0 whose

first two queries are 𝐹 (𝑟) and 𝑃 (𝑠) for some other primitive 𝑃 :

𝐺 → 𝐺 , it would corresponds to the frame:

Φ𝐷0
= {ax1 ↦→ (𝐹, 𝑟), ax2 ↦→ (𝑃, 𝑠)}

This frame is not statically equivalent to Φ𝐷 nor Φ𝐷′ . Indeed, if

we take b = 𝜋
1/2 (ax2) and Z = 𝐹 in the definition, the test “b = Z ”

holds in Φ𝐷 and Φ𝐷′ but not in Φ𝐷0
. This models the fact that, after

receiving two queries from 𝐷 + 𝐷 ′ + 𝐷0, a simulator can know

whether it is playing against 𝐷 + 𝐷 ′ or 𝐷0. Consider then that the

third queries of 𝐷 and 𝐷 ′ are, respectively, 𝐹 (𝑡) and 𝐹 (𝑠) for some

fresh random group element 𝑡 . This leads to the extended frames:

Φ+𝐷 = Φ𝐷 ∪ {ax3 ↦→ (𝐹, 𝑡)}
Φ+𝐷′ = Φ𝐷′ ∪ {ax3 ↦→ (𝐹, 𝑠)}

which are not statically equivalent any more. Indeed, the test

𝜋
2/2 (ax1) = 𝜋

2/2 (ax2) ⊕ 𝜋2/2 (ax3)

holds in Φ+
𝐷′ but not in Φ

+
𝐷
. This formalises the fact that a simulator

having received its third query from 𝐷 + 𝐷 ′ can use this equality

test to infer whether it is playing against 𝐷 or 𝐷 ′.

ASIACCS’22, May 30–June 3, 2022, Nagasaki, Japan Itsaka Rakotonirina, Miguel Ambrona, Alejandro Aguirre, and Gilles Barthe

To reflect this in the model, we finally introduce an original no-

tion of solution consistency: it formalises this idea that indistinguish-

able branch prefixes should be treated identically by simulators.

Definition 4.8 (consistency). Let Γ1, . . . , Γ𝑛 be constraint systems,

with Γ𝑖 = (Φ𝑖 ,D𝑖 , 𝜑𝑖) and Σ a common solution to all of them with

respective first-order solutions 𝜎𝑖 . In the following we write Φ[ℓ]
the frameΦ restricted to its first ℓ axioms.We say that Σ is consistent
if, for all 𝑖, 𝑗 ∈ [1, 𝑛], and for all 𝑋 : ℓ ∈ D𝑖 , 𝑌 : ℓ ∈ D𝑗 ,

Φ𝑖 [ℓ]𝜎𝑖 ∼ Φ𝑗 [ℓ]𝜎 𝑗 ⇒ 𝑋Σ = 𝑌Σ .

4.3 Main result
We have gathered all ingredients to formalise our main theorem.

As in Example 4.7, we associate a constant 𝐹 to each oracle symbol

𝐹 ∈ Orcl, so that we can store in frames which oracle calls have

been performed. Given a non-branching distinguisher code 𝑐 ,

Γ(𝑐) = Transl(∅, ∅, 𝑐)
will refer to the translation of 𝑐 into a constraint system, where:

Transl(Φ,D, return 𝜑) = (Φ,D, 𝜑)
Transl(Φ,D, 𝑥1, . . . , 𝑥𝑞 ← 𝐹 (t); 𝑐) = Transl(Φ,D, 𝑐𝜎)

if 𝐹 ∈ Orcl ∖𝑄 , and 𝜎 = {𝑥𝑖 ↦→ 𝜋𝑖/𝑞 (𝐹 (t)) }
𝑞

𝑖=1

Transl(Φ,D, x← 𝐹 (t); 𝑐) = Transl(Φ′,D ∪ {𝑋 ⊢? x}, 𝑐)
if 𝐹 ∈ 𝑄 , Φ′ = Φ ∪ {ax|dom(Φ) |+1 ↦→ 𝐹, t}, and 𝑋 : |dom(Φ′) | fresh

We assumed for simplicity that variables are adequately alpha-

renamed so that variables are only bound once by queries. Under

this assumption, our main result is stated as follows:

Main theorem. Let𝐷 = J𝑐1+· · ·+𝑐𝑛K be an algebraic distinguisher
for some non-branching distinguisher codes 𝑐𝑖 . Then the following
points are equivalent:

(i) 𝐷 is universal
(ii) the constraint systems Γ(𝑐1), . . . , Γ(𝑐𝑛) have no common, con-

sistent solutions Σ

We provide a formal proof of this result in the appendix, but give

below an outline of the arguments we use.

Step 1: Reducing the class of simulators. The first step of our

appendix proof is to reduce the problem to the study of simulators

that are deterministic and perform a bounded number of oracle

queries. This is a standard reduction relying on the fact that if

a probabilistic simulator 𝑆 wins with overwhelming probability

against a distinguisher 𝐷 , then in particular at least one execution

of 𝑆 wins against 𝐷 with higher probability.

Step 2: Soundness of the reference theory. We show that if two

ground terms are equal (resp. different) in the equational theory,

then their interpretation as bitstrings are equal (resp. different) with

overwhelming probability. Similarly, we show that if two frames

are statically equivalent then they induce indistinguishable distri-

butions. We obtain this convenient correspondence between the

symbolic and computational frameworks by using characterisations

of computational soundness found in [BCK09]. This justifies among

other things the implication (i)⇒ (ii) of the main theorem. Specifi-

cally, the computational indistinguishability of statically equivalent

frames justifies the consistency requirement of the theorem.

Step 3: Completeness. To establish the other implication (ii)⇒(i),
we have to show that if a constraint system Γ has no solutions,

then no simulators can satisfy its constraints with overwhelming

probability. However, impossibility results seem to suggest the con-

trary [Unr10]: one typical problem is the blowup of the number

of collisions when xoring increasingly many random group ele-

ments. These collisions are not captured by symbolic models, and

become overwhelmingly probable when performing a number of

xors that is proportional to the security parameter [. Our proof

therefore amounts to combinatorial arguments relying on the fact

that our grammar only allows to specify distinguishers that perform

a constant number of operations. We show that this restriction is

necessary in Appendix 6.2, i.e., we construct an unsound example

in an extension of our syntax with parametric loops.

4.4 Constraint solving
Themain theorem reduces the decision of universality to a combina-

tion of symbolic notions (constraint systems and static equivalence):

the natural next step is to search for decidability results for them.

They are indeed standard, at least in the context of security proto-

cols, and have received in-depth academic scrutiny.

Constraint satisfiability. Constraint systems have been studied

in [Bau07, DLLT08, CR10, CCLD11, DKP12, CCD13, CKR18]. How-

ever, in (Φ,D, 𝜑), our generic grammar for 𝜑 is very permissive

compared to the related work that typically only allows for con-

junctions of (dis)equations; our prototype implementation therefore

operates in a more restricted setting fitting the decidability results

from the literature. It is known for example that the satisfiability

problem (“has one constraint system a solution?”) is decidable for

subterm convergent theories [Bau07] (a class of theories including
our equational theory for inverse cancellation) and group theo-
ries [DLLT08, DKP12] (which is more general than our theory of

XOR). There then exists some combination results to obtain de-

cidability in the union of the two disjoint theories [CR10], under

some technical assumptions. However, the problem we study in the

context of branching distinguishers (common solutions to several

constraint systems) is less standard. In many cases though, the simu-

lator constraints we obtain are simple enough to reduce the problem

to a single-constraint setting (our prototype only answers when it

manages to do so). Still, for future perspectives, one may note that

our non-standard problem can be encoded as an equivalence in some

cases. For example (Φ1,D, 𝜑1) and (Φ2,D, 𝜑2) have no common solu-

tions iff (Φ1,D, 𝜑1) and (Φ2,D,¬𝜑2) have the same set of solutions.

This equivalence of constraint systems has typically been studied in

the context of subterm convergent [Bau07, CCLD11, CKR18] and

group theories [DKP12], although we are not aware of combination

results unlike in the case of satisfiability.

Static equivalence. The decidability of static equivalence has also
been extensively studied [AC06, ACD07, BCLD07, CD12, CDK12].

As in the case of constraint systems, the problem is decidable

for subterm-convergent theories [AC06, CDK12] (and is even NP-

complete [CKR18]), for XOR [CD12], and combination results allow

to obtain decidability for the union of disjoint theories [ACD07,

CD12]. It is however important to remark that the cited references

study the problem of static equivalence for ground frames (in our

Symbolic synthesis of indifferentiability attacks ASIACCS’22, May 30–June 3, 2022, Nagasaki, Japan

(a) 2-round Lai-Massey construction (b) 2-round Feistel sandwich of permutations

(c) 2-round unbalanced Feistel injection

(d) 2-round Confusion-Diffusion network

(e) Single-Permutation Davies-Meyer construction

Figure 7: Schematic description of some constructions on which we evaluate our prototype

context, this corresponds to the case where the responses of the

simulator are never injected in subsequent distinguisher queries). A

typical example where this is insufficient is the universal attack on

4-round Even-Mansour ciphers of [DSST17], involving a complex

consistency argument that we were therefore not able to handle

with our prototype (see Section 5). One may again note that, as

in the case of satisfiability, the question of static equivalence with

variables reduces to classical notions of process equivalence that

are for example studied in [Bau07, CCLD11, CKR18].

In practice. All in all, our main theorem reduces universality to

symbolic notions that are studied in the literature, althought not

always under the exact same assumptions. However, the profusion

of results still allowed us, with limited design effort, to cover many

examples with our prototype AutoDiff by reducing the problems to

settings where decidability is known. Our prototype proceeds this

way, and issues a warning when it strays away from the cases where

its correctness is established. We leave to future work the design of

a complete decision procedure for our notion of constraint solving

to obtain the strict decidability of distinguisher’s universality.

5 PROTOTYPE AND AUTOMATED ATTACKS
Based on the presented approach so far, we implement AutoDiff,
an automated tool for indifferentiability attacks with two modes:

• verification: on input of a candidate distinguisher code 𝑐 , AutoDiff
applies our main theorem to check whether J𝑐K is universal.

• synthesis: AutoDiff attempts to generate a candidate universal

distinguisher that is then tested as in verification mode. This is a

heuristics: it does not guarantee that, if 𝐶 is universally differen-

tiable, a universal distinguisher will effectively be found.

We stress again that the verification of fixed attack codes (Ver-

ification Mode) is non-trivial, due to the universal quantification

over all simulators inherent to the definition of indifferentiability.

In both modes, the users specifies the construction 𝐶 in the refer-

ence theory; the inverse 𝐶−1

should also be specified in case 𝐶 is

invertible, but the tool checks for safety that they are effectively

inverses one from each other by solving a unification problem.

We evaluate the verification mode by formalising and corrobo-

rating existing indifferentiability attacks from the literature, while

the synthesis mode is tasked to rediscover indifferentiability attacks

without guidance. The benchmarks include constructions presented

previously in our paper (Feistel networks, Iterated Even-Mansour

ciphers) and some others presented in this section, among others

in Figures 7a to 7e. All the experiments were executed on an 8-core

machine with 1.80GHz Intel Core i7-10510U CPU and 16GB of RAM.

The code of the tool is open-source (temp. review link):

https://www.dropbox.com/s/1imnc8c0eopv4gz/autodiff.zip?dl=0

5.1 Verifying attacks
We verify existing attacks from the literature as well as negative ex-

amples (invalid attacks) in Table 1. The approach is compatible with

attacks under weaker security notions, e.g., the IND-CCA attack on

3-round Feistel [BF15] or the IND-CPA attack on palindromic Feis-

tel networks (that are Feistel networks where the round functions

𝐹1, . . . , 𝐹𝑘 form a palindrome, i.e., 𝐹1 = 𝐹𝑘 , 𝐹2 = 𝐹𝑘−1
, and so on). It

is known that these networks suffer from many vulnerabilities, in

particular using the following (universal) distinguisher code 𝐷Fpal ,

with 𝑟0, 𝑟1 ∈ Rnd two distinct random group elements:

1 𝑥0, 𝑥1 ← C(𝑟0, 𝑟1);
2 𝑦1, 𝑦0 ← C(𝑥1, 𝑥0);
3 return 𝑟0 =? 𝑦0 ∧ 𝑟1 =? 𝑦1

We note that the analysis of the attack on 4-round IEM [DSST17],

our tool threw a warning stating that the underlying static equiva-

lence problem contains variables and, therefore, is out of the scope

where our procedure is sound (as mentioned in Section 4.4).

5.2 Synthesising attacks
We now present two fully automated heuristics that only take the

construction as an input to derive a universal distinguisher against

it. The naive approach would be to try all distinguisher codes by

https://www.dropbox.com/s/1imnc8c0eopv4gz/autodiff.zip?dl=0

ASIACCS’22, May 30–June 3, 2022, Nagasaki, Japan Itsaka Rakotonirina, Miguel Ambrona, Alejandro Aguirre, and Gilles Barthe

Table 1: Performances of AutoDiff (Verification Mode)

Attack type Construction #Rounds Attack reference Result

IND-CPA Palindromic Feistel network (PFN) ⩽ 10 Distinguisher 𝐷Fpal ✓ < 1 ms

IND-CCA

Feistel Network (FN)

3 Barbosa and Farshim [BF15, Section 7] ✓ < 1 ms
I
n
d
i
ff
e
r
e
n
t
i
a
b
i
l
i
t
y

3 Figure 6 (Daisy) E < 1 ms

3 Figure 6 (David) ✓ < 1 ms

5 Coron et al. [CHK
+
16, Section 2] ✓ 8 ms

6 Greedy attack E 11 ms

Iterated Even-Mansour (IEM)

3 Lampe and Seurin [LS13, Section 3.2] ✓ 6 ms

4 Dai et al. [DSST17, Section 3] ✗ 165 s

Unbalanced Feistel injection 2 Barbosa and Farshim [BF18, Figure 8] ✓ < 1 ms

Merkle-Damgård — Kelsey and Kohno [KK06] ✓ < 1 ms

Confusion-Diffusion Network (CDN) 2 Dodis et al. [DSSL16, Section 3] ✓ 2 ms

✓ Universality proved E Universality disproved ✗ Unable to conclude

increasing size and leverage the verification mode to discard invalid

attacks—this is however intractable in practice. Instead, we devel-

oped two generic heuristics that exploit the internal structure of the

construction𝐶 to synthesise more promising candidate distinguish-

ers. Intuitively, they exploit the fact that the definition of𝐶 has some

structure—at least more than an ideal function—and therefore veri-

fies non-trivial identities. They propose two different approaches

for deriving such relations, and then synthesise a distinguisher

accordingly. We give more details below, using the same notations

as in the reference theory, for a construction 𝐶𝑄
: 𝐺𝑝in → 𝐺𝑝out

.

Heuristic 1: Relations first. This heuristic tries to find a pair of

binary relations 𝜑1, 𝜑2 such that, in the real world, inputs x1, x2

such that x1𝜑1x2 get mapped into outputs such that𝐶 (x1)𝜑2𝐶 (x2),
expecting that it will be hard for the simulator to replicate this

behaviour using only the ideal function 𝑅. For that we first consider

sequences of variables (x𝑖 : 𝐺𝑝in , y𝑖 : 𝐺𝑝out) where 𝑖 ∈ [1, ℓ] for
some ℓ ∈ N. Intuitively, each y𝑖 represents the output of𝐶 for the in-

put x𝑖 . The heuristic then generates a system of equations as follows.

It generates two arbitrary terms 𝜑1 (x1, . . . , xℓ) and 𝜑2 (y1, . . . , yℓ).
For each pair of such terms, our algorithm considers:

𝜑1 (x1, . . . , xℓ) =?

0 ∧ 𝜑2 (y1, . . . , yℓ) =?

0 ∧∧ℓ
𝑖=1

y𝑖 =? 𝐶 (x𝑖)
with, in addition, some extra disequality constraints to guarantee

that 𝜑1 or 𝜑2 would not be zero in the simulated world.

The described system is then solved using unification modulo

theory, that is, we instantiate the variables of the system by ground

terms of T (F ∪ Rnd) in a way the constraints are satisfied. This

can be used to build a distinguisher, that performs the necessary

oracle calls to compute the instantiated terms. As several (partial)

orders of queries may be possible, we found it relevant to try out

the codes corresponding to each possible permutations; we have

however not observed in practice significant blow-ups, since there

are still some partial dependencies in the order that often reduce

the possibilities. Finally, the distinguisher returns 𝜑2 as its final test.

The heuristics then submits the distinguisher to verification; in case

of failure, it tries the procedure again with other terms 𝜑1 and 𝜑2,

until all terms of a given size 𝑠 have been tried (𝑠 = 7 in Table 2).

Heuristic 2: Expressions first. This heuristic tries, instead, to find
a linear combination of expressions that is symbolically equal to 0

in the real world, but in a non-trivial manner so that it is hard for

Table 2: Performances of AutoDiff (Synthesis Mode)

Construction #Rounds Attack type

Heuristics

#1 #2

FN

2 IND-CPA ✓ < 1 s ✓ < 1 s

3 IND-CCA ✓ < 1 s ✓ < 1 s

4

Indiff.

✓ 3 s �
5 ✓ 53 s �
6 ✗ 73 s �

PFN

2 IND-CPA ✓ < 1 s ✓ < 1 s

3

IND-CCA

✓ < 1 s ✓ < 1 s

4 ✓ 2 s ✓ < 1 s

5 ✓ 67 s ✓ < 1 s

6 ✗ 75 s ✓ < 1 s

1 IND-CPA ✗ < 1 s ✓ < 1 s

IEM 2

Indiff.

✗ < 1 s ✓ 50 s

3 ✗ 1 s �

LM (Fig.7a)

1

Indiff.

✓ < 1 s ✓ < 1 s

2 ✓ 21 s �

FPS (Fig.7b) 2

Indiff.

✓ 2 s �
UFI (Fig.7c) 2 ✗ < 1 s ✓ < 1 s

CDN (Fig.7d) 2 ✓ < 1 s ✓ 10 s

DMC (Fig.7e) — ✗ < 1 s ✓ 16 s

✓ Attack found ✗ No attack found � Timeout (>100 seconds)

the simulator to replicate this behaviour. For some number arbitrary

parameters 𝑑 (the results of Table 2 are for 𝑑 = 5), it generates all

terms of T (Orcl ∪ Rnd) of size 𝑑 or less, up to bijective renaming

of random group elements. It then starts testing ⊕-combinations of

some of these terms, until finding a combination 𝑒 that is non-null

in general, but null after replacing each occurrence of C(t) by the

real-world definition 𝐶 (t). Intuitively, answering queries in a way

that 𝑒 evaluates to 0 in the simulated world is expectedly hard. As in

the first heuristics, distinguishers are then derived from 𝑒 bymaking

the oracle queries necessary to compute it, followed by return 𝑒 =?

0.

The process keeps going until a universal distinguisher is found or

all possible linear combinations have been exhausted.

Results. Our results on attack synthesis are gathered in Table 2.

An attack that does not require to invoke the round functions is

Symbolic synthesis of indifferentiability attacks ASIACCS’22, May 30–June 3, 2022, Nagasaki, Japan

classified as IND-CCA, and as IND-CPA if it only uses the main oracle

and not its inverse. We point out that, as the above description

suggests, the heuristics are defined with a general purpose and are

not specifically tailored to our set of benchmarks. Also observe

that our heuristics complement each other well in that an attack is

found for most of the case studies by at least one of them. Heuristic

1 remarkably synthesises a universal attack against 5-round Feistel

network fully automatically. On the other hand, none of our heuris-

tics could attack the iterated Even-Mansour construction with more

than 2 rounds. We expect that improving our heuristics by making

use of branching may lead to covering these missing cases.

6 DISCUSSION AND EXTENSIONS
We discuss here some side results and related research directions,

as well as technical limits and improvements of our contributions.

6.1 Collision finding
We also experimented our approach in other domains of cryptogra-

phy, for instance, finding collisions to hash functions. We reduce

this problem to a similar (yet much more elementary) notion of

constraint solving that can be analysed by a fragment of AutoDiff
(or most other general-purpose symbolic tools). As an illustrative

example, consider the 64 basic ways to construct a hash function

𝐻 : {0, 1}∗ → {0, 1}[from a block cipher 𝐸 : {0, 1}[× {0, 1}[→
{0, 1}[, the PGV functions, proposed by Preneel et al. [PGV94].

These were classified, according to different levels of security, into

several groups, which were later refined [BRS02], one of the rele-

vant studied properties being collision resistance. It was concluded
that only 12 of them satisfied strong notions of security.

We express collisions for these hash function candidates in a

natural way, i.e., as equality constraints. In these terms, collision

resistance therefore rephrases to unification in the reference theory,

that is, the question of finding, given two terms 𝑢, 𝑣 , a substitution

𝜎 such that 𝑢𝜎 =E 𝑣𝜎 , if any. We could then leverage the constraint

solving algorithms developed in AutoDiff; this resulted in AutoDiff
automatically identifying the same set of 12 distinguished functions.

6.2 Assumption of boundedness
Algebraic distinguishers have two main restrictions:

(1) they only perform operations from the reference theory, and

(2) the number of operations they perform is fixed, i.e., it does not

increase with the security parameter [.

The first restriction is the reason we are able to carry out a sym-

bolic analysis at all. One could however wonder whether one could

get rid of the second one, for example, by allowing distinguisher

codes to perform loops of length [. We can actually show that this

assumption is necessary; by that we mean that there exists a distin-

guisher 𝐷 , performing a number of operations proportional to [,

against a construction𝐶 that will be considered as universal by our

main theorem while there exists a simulator 𝑆 winning against 𝐷 .

This relies on the following simple observation, recalling similar

impossibility results in security-protocol analysis [Unr10]:

Proposition 6.1. Let 𝐸 be a set of [+ 1 pairwise distinct [-
bitstrings. Then there exists a non-empty subset 𝑃 ⊆ 𝐸, efficiently
computable from 𝐸, such that

∑
𝑥 ∈𝑃 𝑥 = 0 (where

∑
means xoring).

Proof. It suffices to observe that there exists 2
[+1

subsets of 𝐸

but only 2
[
different bitstrings; by the pigeonhole principle, there

needs to exist 𝑃1, 𝑃2 ⊆ 𝐸 distinct such that

∑
𝑥 ∈𝑃1

𝑥 =
∑
𝑥 ∈𝑃2

𝑥 .

By the self-cancellation property of xor, we therefore obtain the

expected conclusion by taking the symmetric difference 𝑃 = 𝑃1Δ𝑃2.

The set 𝑃 can then easily be computed from 𝐸 by Gaussian elimina-

tion, seeing 𝐺 as the vector space GF(2)[. □

This shows that our symbolic model, that does not capture any

algebraic relations between random group elements, is unsound if

there are [+ 1 of them. In the bounded case, our proof of the main

theorem precisely relies on the fact that the probability that a non-

empty subset 𝑃 ⊆ 𝐸 of null sum exists is negligible if 𝐸 contains

a bounded number of uniformly sampled bitstrings (rather than

[+ 1). But let us construct a concrete counterexample, given the

construction 𝐶 (𝑥) = 𝑥 and a primitive 𝐹 : 𝐺 → 𝐺 . Consider then

the following (unbounded) distinguisher code:

1 𝑥0 ← 𝐹 (𝑟0); . . . ;𝑥[← 𝐹 (𝑟[);
2 𝑥 ← C(𝑟);
3 return (𝑥0, . . . , 𝑥[) ≠? (0, . . . , 0) ∧ (𝑥 = 𝑟 ∨ 𝜑)

with random group elements 𝑟, 𝑟0, . . . , 𝑟[, and where the formula

𝜑 =
∧[

𝑖=0
(𝑥𝑖 =?

0 ∨ 𝑥𝑖 =? 𝑟𝑖) ∧
∑[

𝑖=0
𝑥𝑖 =

?

0

models that the set {𝑥0, . . . , 𝑥[} ∖ {0} is a subset of {𝑟0, . . . , 𝑟[}
of null sum. Intuitively, the distinguisher sends [+ 1 random val-

ues 𝑟𝑖 to the simulator, and then checks that either (1) C(𝑟) = 𝑟 ,

which holds with overwhelming probability iff the distinguisher

is executed in the real world; (2) or that 𝜑 holds. The constraint

system corresponding to this distinguisher has no solutions, but by

Proposition 6.1, there exists a simulator satisfying this requirement.

Note that this example uses the expressivity of grammar for

return formulas to its fullest (in particular, disjunctions), unlike

most decidability results on constraint systems. The example is

however not an artifact of our permissive formalism: provided we

extend the reference theory with free symbols h ∈ Fun (intuitively

modelling publicly available random functions), the above return
statement can be encoded with formulas that only allows conjunc-

tions of equations 𝑢 =? 𝑣 and disequations 𝑢 ≠? 𝑣 between terms of

arity 1. We do not detail the full encoding, but mention for example:

• (𝑢,𝑢 ′) ≠? (𝑣, 𝑣 ′) can be encoded by 𝑢 ⊕ h(𝑢 ′) ≠? 𝑣 ⊕ h(𝑣 ′), thus
allowing to model comparisons of tuples;

• 𝑥𝑖 =
?

0 ∨ 𝑥𝑖 =? 𝑟𝑖 by h(0) ⊕ h(𝑥𝑖) ⊕ h(𝑟𝑖) ⊕ h(𝑥𝑖 ⊕ 𝑟𝑖) =?

0, thus

allowing to model most disjunctions of interest.

6.3 Extending the reference theory
In this paper we limited ourselves to a reference theory modelling

xor and inverse-cancellation. But from a decidability standpoint, the

settings where constraint satisfiability is known to be decidable are

usually stable by addition of free function symbols. They would typ-

ically model public permutations as in general confusion-diffusion

mechanisms, or to some extent in Substitution-Permutation net-

works such as AES. More generally, our reference theory is rather

restricted compared to the amount of theories that have been stud-

ied in unification theory, which suggests that scope improvements

of our approach are possible to obtain with reasonable effort.

ASIACCS’22, May 30–June 3, 2022, Nagasaki, Japan Itsaka Rakotonirina, Miguel Ambrona, Alejandro Aguirre, and Gilles Barthe

6.4 Proofs of universality
A natural follow-up question is whether our approach may prove in-
differentiability, i.e., check the validity of a given simulator. Actually,

simulators may be specified in calculi of communicating processes

such as the applied pi calculus [ABF17]. Consider 𝐶 (𝑥) = 𝑥 ⊕ 𝐹 (𝑥)
for example, and a simulator 𝑆𝑅 that emulates queries to 𝐹 (𝑥) by
returning 𝑅(𝑥) ⊕𝑥 . In the applied pi calculus, the real and simulated

oracle systems can be modelled by the processes 𝑃real and 𝑃sim:

𝑃real = ! in(𝑞𝑐 , 𝑥); out(𝑞𝑐 , 𝑥 ⊕ 𝐹 (𝑥)) | ! in(𝑞𝐹 , 𝑥); out(𝑞𝐹 , 𝐹 (𝑥))
𝑃sim = ! in(𝑞𝑐 , 𝑥); out(𝑞𝑐 , 𝑅(𝑥)) | ! in(𝑞𝐹 , 𝑥); out(𝑞𝐹 , 𝑅(𝑥) ⊕ 𝑥)

These processes model an unbounded number of queries to (1) the

main oracle C, under the form of an input from the adversary on a

channel 𝑞𝑐 , written in(𝑞𝑐 , 𝑥), answered by output 𝑢 ∈ {𝐶 (𝑥), 𝑅(𝑥)},
written out(𝑞𝑐 , 𝑢); and to (2) the primitive 𝐹 , similarly. An interest-

ing lead is whether the validity of 𝑆 can be reduced to the decision

of processes equivalences [ABF17, CKR18], e.g., trace equivalence,
modelling the indistinguish distinguish between the two processes.

7 CONCLUSION
We have developed and implemented symbolic methods for syn-

thesising universal distinguishers against indifferentiability. Our

method covers a broad set of examples from the literature, including

Feistel networks and Iterated Even-Mansour blockciphers. Inter-

esting directions for future work include decidability of constraint

solving, and support for public permutations in our syntax (e.g., for

larger Confusion-Diffusion networks, or Substitution-Permutation

networks), or adapting the approach to prove indifferentiability.

REFERENCES
[ABF17] Martín Abadi, Bruno Blanchet, and Cédric Fournet. The applied pi calcu-

lus: Mobile values, new names, and secure communication. Journal of
the ACM (JACM), 2017.

[ABGW17] Miguel Ambrona, Gilles Barthe, Romain Gay, and HoeteckWee. Attribute-

based encryption in the generic group model: Automated proofs and

new constructions. In Bhavani M. Thuraisingham, David Evans, Tal

Malkin, and Dongyan Xu, editors, ACM CCS 2017: 24th Conference on
Computer and Communications Security, pages 647–664, Dallas, TX, USA,
October 31 – November 2, 2017. ACM Press.

[ABS16] Miguel Ambrona, Gilles Barthe, and Benedikt Schmidt. Automated un-

bounded analysis of cryptographic constructions in the generic group

model. In Marc Fischlin and Jean-Sébastien Coron, editors, Advances
in Cryptology – EUROCRYPT 2016, Part II, volume 9666 of Lecture Notes
in Computer Science, pages 822–851, Vienna, Austria, May 8–12, 2016.

Springer, Heidelberg, Germany.

[AC06] Martín Abadi and Véronique Cortier. Deciding knowledge in security

protocols under equational theories. Theor. Comput. Sci., 367(1-2):2–32,
2006.

[ACD07] Mathilde Arnaud, Véronique Cortier, and Stéphanie Delaune. Combining

algorithms for deciding knowledge in security protocols. In Boris Konev

and Frank Wolter, editors, Frontiers of Combining Systems, pages 103–117,
Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[AR07] Martín Abadi and Phillip Rogaway. Reconciling two views of cryptog-

raphy (the computational soundness of formal encryption). J. Cryptol.,
20(3):395, 2007.

[Bau07] Mathieu Baudet. Sécurité des protocoles cryptographiques: aspects logiques
et calculatoires. PhD thesis, École normale supérieure de Cachan, 2007.

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based

encryption with constant size ciphertext. In Ronald Cramer, editor, Ad-
vances in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture Notes
in Computer Science, pages 440–456, Aarhus, Denmark, May 22–26, 2005.

Springer, Heidelberg, Germany.

[BBK17] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. Verified

models and reference implementations for the tls 1.3 standard candidate.

In IEEE Symposium on Security and Privacy (S&P), 2017.

[BCG
+
13] Gilles Barthe, Juan Manuel Crespo, Benjamin Grégoire, César Kunz, Yas-

sine Lakhnech, Benedikt Schmidt, and Santiago Zanella Béguelin. Fully

automated analysis of padding-based encryption in the computational

model. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, edi-

tors, ACM CCS 2013: 20th Conference on Computer and Communications
Security, pages 1247–1260, Berlin, Germany, November 4–8, 2013. ACM

Press.

[BCK09] Mathieu Baudet, Véronique Cortier, and Steve Kremer. Computationally

sound implementations of equational theories against passive adversaries.

Information and Computation, 207(4):496–520, 2009.
[BCLD07] Sergiu Bursuc, Hubert Comon-Lundh, and Stéphanie Delaune.

Associative-commutative deducibility constraints. In Wolfgang Thomas

and Pascal Weil, editors, STACS 2007, pages 634–645, Berlin, Heidelberg,
2007. Springer Berlin Heidelberg.

[BDF11] Charles Bouillaguet, Patrick Derbez, and Pierre-Alain Fouque. Automatic

search of attacks on round-reduced AES and applications. In Phillip

Rogaway, editor, Advances in Cryptology – CRYPTO 2011, volume 6841

of Lecture Notes in Computer Science, pages 169–187, Santa Barbara, CA,
USA, August 14–18, 2011. Springer, Heidelberg, Germany.

[BDH
+
18] David Basin, Jannik Dreier, Lucca Hirschi, Saša Radomirovic, Ralf Sasse,

and Vincent Stettler. A formal analysis of 5g authentication. In ACM
Conference on Computer and Communications Security (CCS), 2018.

[BDPVA08] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. On

the indifferentiability of the sponge construction. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques
(EuroCrypt), 2008.

[BF15] Manuel Barbosa and Pooya Farshim. The related-key analysis of Feis-

tel constructions. In Carlos Cid and Christian Rechberger, editors, Fast
Software Encryption – FSE 2014, volume 8540 of Lecture Notes in Com-
puter Science, pages 265–284, London, UK, March 3–5, 2015. Springer,

Heidelberg, Germany.

[BF18] Manuel Barbosa and Pooya Farshim. Indifferentiable authenticated en-

cryption. In Hovav Shacham and Alexandra Boldyreva, editors, Advances
in Cryptology – CRYPTO 2018, Part I, volume 10991 of Lecture Notes in
Computer Science, pages 187–220, Santa Barbara, CA, USA, August 19–23,
2018. Springer, Heidelberg, Germany.

[BFF
+
14] Gilles Barthe, Edvard Fagerholm, Dario Fiore, John C. Mitchell, Andre

Scedrov, and Benedikt Schmidt. Automated analysis of cryptographic

assumptions in generic group models. In Juan A. Garay and Rosario

Gennaro, editors, Advances in Cryptology – CRYPTO 2014, Part I, volume

8616 of Lecture Notes in Computer Science, pages 95–112, Santa Barbara,
CA, USA, August 17–21, 2014. Springer, Heidelberg, Germany.

[BFG
+
18] Gilles Barthe, Xiong Fan, Joshua Gancher, Benjamin Grégoire, Charlie

Jacomme, and Elaine Shi. Symbolic proofs for lattice-based cryptography.

In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang,

editors, ACM CCS 2018: 25th Conference on Computer and Communications
Security, pages 538–555, Toronto, ON, Canada, October 15–19, 2018. ACM
Press.

[BGJ
+
19] Gilles Barthe, Benjamin Grégoire, Charlie Jacomme, Steve Kremer, and

Pierre-Yves Strub. Symbolic methods in computational cryptography

proofs. In 31st IEEE Computer Security Foundations Symposium (CSF),
2019.

[BGS15] Gilles Barthe, Benjamin Grégoire, and Benedikt Schmidt. Automated

proofs of pairing-based cryptography. In Indrajit Ray, Ninghui Li, and

Christopher Kruegel, editors, ACM CCS 2015: 22nd Conference on Com-
puter and Communications Security, pages 1156–1168, Denver, CO, USA,
October 12–16, 2015. ACM Press.

[BPW06] Johannes Buchmann, Andrei Pyshkin, and Ralf-Philipp Weinmann. A

zero-dimensional Gröbner basis for AES-128. In Matthew J. B. Robshaw,

editor, Fast Software Encryption – FSE 2006, volume 4047 of Lecture Notes in
Computer Science, pages 78–88, Graz, Austria, March 15–17, 2006. Springer,

Heidelberg, Germany.

[BR94] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In

Workshop on the Theory and Application of of Cryptographic Techniques,
1994.

[BRS02] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-box analysis

of the block-cipher-based hash-function constructions from PGV. In

Moti Yung, editor, Advances in Cryptology – CRYPTO 2002, volume 2442

of Lecture Notes in Computer Science, pages 320–335, Santa Barbara, CA,
USA, August 18–22, 2002. Springer, Heidelberg, Germany.

[CCD13] Vincent Cheval, Véronique Cortier, and Stéphanie Delaune. Deciding

equivalence-based properties using constraint solving. Theoretical Com-
puter Science, 2013.

[CCLD11] Vincent Cheval, Hubert Comon-Lundh, and Stéphanie Delaune. Trace

equivalence decision: Negative tests and non-determinism. In ACM
conference on Computer and communications security (CCS, 2011.

Symbolic synthesis of indifferentiability attacks ASIACCS’22, May 30–June 3, 2022, Nagasaki, Japan

[CD12] Véronique Cortier and Stéphanie Delaune. Decidability and combination

results for two notions of knowledge in security protocols. Journal of
Automated Reasoning, 48(4):441–487, 2012.

[CDE
+
08] Judicaël Courant, Marion Daubignard, Cristian Ene, Pascal Lafourcade,

and Yassine Lakhnech. Towards automated proofs for asymmetric encryp-

tion schemes in the random oracle model. In Peng Ning, Paul F. Syverson,

and Somesh Jha, editors, ACM CCS 2008: 15th Conference on Computer
and Communications Security, pages 371–380, Alexandria, Virginia, USA,
October 27–31, 2008. ACM Press.

[CDK12] Ştefan Ciobâcă, Stéphanie Delaune, and Steve Kremer. Computing knowl-

edge in security protocols under convergent equational theories. Journal
of Automated Reasoning, 2012.

[CHH
+
17] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla

van der Merwe. A comprehensive symbolic analysis of tls 1.3. In ACM
Conference on Computer and Communications Security (CCS), 2017.

[CHK
+
16] Jean-Sébastien Coron, Thomas Holenstein, Robin Künzler, Jacques

Patarin, Yannick Seurin, and Stefano Tessaro. How to build an ideal

cipher: The indifferentiability of the feistel construction. Journal of Cryp-
tology, 29(1):61–114, Jan 2016.

[CKR18] Vincent Cheval, Steve Kremer, and Itsaka Rakotonirina. DEEPSEC: De-

ciding equivalence properties in security protocols theory and practice.

In IEEE Symposium on Security and Privacy (S&P), 2018.
[CKW11] Véronique Cortier, Steve Kremer, and Bogdan Warinschi. A survey of

symbolic methods in computational analysis of cryptographic systems.

Journal of Automated Reasoning, 2011.
[CLC08] Hubert Comon-Lundh and Véronique Cortier. Computational sound-

ness of observational equivalence. In ACM conference on Computer and
communications security (CCS), 2008.

[CM03] Nicolas Courtois and Willi Meier. Algebraic attacks on stream ciphers

with linear feedback. In Eli Biham, editor, Advances in Cryptology –
EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science,
pages 345–359, Warsaw, Poland, May 4–8, 2003. Springer, Heidelberg,

Germany.

[Cou03] Nicolas Courtois. Fast algebraic attacks on stream ciphers with linear

feedback. In Dan Boneh, editor, Advances in Cryptology – CRYPTO 2003,
volume 2729 of Lecture Notes in Computer Science, pages 176–194, Santa
Barbara, CA, USA, August 17–21, 2003. Springer, Heidelberg, Germany.

[CPS08] Jean-Sébastien Coron, Jacques Patarin, and Yannick Seurin. The ran-

dom oracle model and the ideal cipher model are equivalent. In David

Wagner, editor, Advances in Cryptology – CRYPTO 2008, volume 5157 of

Lecture Notes in Computer Science, pages 1–20, Santa Barbara, CA, USA,
August 17–21, 2008. Springer, Heidelberg, Germany.

[CR10] Yannick Chevalier and Michael Rusinowitch. Symbolic protocol analysis

in the union of disjoint intruder theories: Combining decision procedures.

Theoretical Computer Science, 2010.
[DF16] Patrick Derbez and Pierre-Alain Fouque. Automatic search of meet-in-

the-middle and impossible differential attacks. In Matthew Robshaw and

Jonathan Katz, editors, Advances in Cryptology – CRYPTO 2016, Part II,
volume 9815 of Lecture Notes in Computer Science, pages 157–184, Santa
Barbara, CA, USA, August 14–18, 2016. Springer, Heidelberg, Germany.

[DKP12] Stéphanie Delaune, Steve Kremer, and Daniel Pasaila. Security protocols,

constraint systems, and group theories. In International Joint Conference
on Automated Reasoning (IJCAR), 2012.

[DLLT08] Stéphanie Delaune, Pascal Lafourcade, Denis Lugiez, and Ralf Treinen.

Symbolic protocol analysis for monoidal equational theories. Information
and Computation, 2008.

[DS16] Yuanxi Dai and John P. Steinberger. Indifferentiability of 8-round Feistel

networks. In Matthew Robshaw and Jonathan Katz, editors, Advances
in Cryptology – CRYPTO 2016, Part I, volume 9814 of Lecture Notes in
Computer Science, pages 95–120, Santa Barbara, CA, USA, August 14–18,
2016. Springer, Heidelberg, Germany.

[DSSL16] Yevgeniy Dodis, Martijn Stam, John P. Steinberger, and Tianren Liu.

Indifferentiability of confusion-diffusion networks. In Marc Fischlin and

Jean-Sébastien Coron, editors,Advances in Cryptology – EUROCRYPT 2016,
Part II, volume 9666 of Lecture Notes in Computer Science, pages 679–704,
Vienna, Austria, May 8–12, 2016. Springer, Heidelberg, Germany.

[DSST17] Yuanxi Dai, Yannick Seurin, John P. Steinberger, and Aishwarya Thiru-

vengadam. Indifferentiability of iterated Even-Mansour ciphers with

non-idealized key-schedules: Five rounds are necessary and sufficient.

In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology –
CRYPTO 2017, Part III, volume 10403 of Lecture Notes in Computer Science,
pages 524–555, Santa Barbara, CA, USA, August 20–24, 2017. Springer,

Heidelberg, Germany.

[DY81] D. Dolev and A.C. Yao. On the security of public key protocols. In

Symposium on Foundations of Computer Science (FOCS), 1981.
[EM97] Shimon Even and Yishay Mansour. A construction of a cipher from a

single pseudorandom permutation. Journal of cryptology, 1997.

[Fei73] H. Feistel. Cryptography and Computer Privacy. Scientific American,

1973.

[FOPS01] Eiichiro Fujisaki, Tatsuaki Okamoto, David Pointcheval, and Jacques Stern.

Rsa-oaep is secure under the rsa assumption. In Annual International
Cryptology Conference (CRYPTO), 2001.

[HKM15] Viet Tung Hoang, Jonathan Katz, and Alex J. Malozemoff. Automated

analysis and synthesis of authenticated encryption schemes. In Indra-

jit Ray, Ninghui Li, and Christopher Kruegel, editors, ACM CCS 2015:
22nd Conference on Computer and Communications Security, pages 84–95,
Denver, CO, USA, October 12–16, 2015. ACM Press.

[HKT10] Thomas Holenstein, Robin Künzler, and Stefano Tessaro. Equivalence

of the random oracle model and the ideal cipher model, revisited. CoRR,
abs/1011.1264, 2010.

[JK21] Charlie Jacomme and Steve Kremer. An extensive formal analysis of

multi-factor authentication protocols. ACM Transactions on Privacy and
Security (TOPS), 2021.

[KK06] John Kelsey and Tadayoshi Kohno. Herding hash functions and the

nostradamus attack. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques (EUROCRYPT). Springer, 2006.

[KM07] Steve Kremer and Laurent Mazaré. Adaptive soundness of static equiva-

lence. In European Symposium on Research in Computer Security (ESORICS,
2007.

[Leu12] Gaëtan Leurent. Analysis of differential attacks in ARX constructions. In

Xiaoyun Wang and Kazue Sako, editors, Advances in Cryptology – ASI-
ACRYPT 2012, volume 7658 of Lecture Notes in Computer Science, pages
226–243, Beijing, China, December 2–6, 2012. Springer, Heidelberg, Ger-

many.

[LS13] Rodolphe Lampe and Yannick Seurin. How to construct an ideal cipher

from a small set of public permutations. In Kazue Sako and Palash Sarkar,

editors, Advances in Cryptology – ASIACRYPT 2013, Part I, volume 8269

of Lecture Notes in Computer Science, pages 444–463, Bengalore, India,
December 1–5, 2013. Springer, Heidelberg, Germany.

[Mau05] Ueli M. Maurer. Abstract models of computation in cryptography (invited

paper). In Nigel P. Smart, editor, 10th IMA International Conference on
Cryptography and Coding, volume 3796 of Lecture Notes in Computer
Science, pages 1–12, Cirencester, UK, December 19–21, 2005. Springer,

Heidelberg, Germany.

[Mea20] CatherineMeadows. Symbolic and computational reasoning about crypto-

graphic modes of operation. Cryptology ePrint Archive, Report 2020/142,

2020. https://eprint.iacr.org/2020/794.

[MKG14] Alex J. Malozemoff, Jonathan Katz, and Matthew D. Green. Automated

analysis and synthesis of block-cipher modes of operation. In Anupam

Datta and Cedric Fournet, editors, CSF 2014: IEEE 27st Computer Security
Foundations Symposium, pages 140–152, Vienna, Austria, jul 19-22 2014.

IEEE Computer Society Press.

[MRH04] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentia-

bility, impossibility results on reductions, and applications to the random

oracle methodology. InMoni Naor, editor, TCC 2004: 1st Theory of Cryptog-
raphy Conference, volume 2951 of Lecture Notes in Computer Science, pages
21–39, Cambridge, MA, USA, February 19–21, 2004. Springer, Heidelberg,

Germany.

[Nec94] V. I. Nechaev. Complexity of a determinate algorithm for the discrete

logarithm. Mathematical Notes, 55(2):165–172, 1994.
[PGV94] Bart Preneel, René Govaerts, and Joos Vandewalle. Hash functions based

on block ciphers: A synthetic approach. In Douglas R. Stinson, editor,

Advances in Cryptology – CRYPTO’93, volume 773 of Lecture Notes in
Computer Science, pages 368–378, Santa Barbara, CA, USA, August 22–26,
1994. Springer, Heidelberg, Germany.

[RSS11] Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton. Careful

with composition: Limitations of the indifferentiability framework. In

Kenneth G. Paterson, editor, Advances in Cryptology – EUROCRYPT 2011,
volume 6632 of Lecture Notes in Computer Science, pages 487–506, Tallinn,
Estonia, May 15–19, 2011. Springer, Heidelberg, Germany.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems.

In Walter Fumy, editor, Advances in Cryptology – EUROCRYPT’97, vol-
ume 1233 of Lecture Notes in Computer Science, pages 256–266, Konstanz,
Germany, May 11–15, 1997. Springer, Heidelberg, Germany.

[SSD
+
18] Danping Shi, Siwei Sun, Patrick Derbez, Yosuke Todo, Bing Sun, and

Lei Hu. Programming the Demirci-Selçuk meet-in-the-middle attack

with constraints. In Thomas Peyrin and Steven Galbraith, editors, Ad-
vances in Cryptology – ASIACRYPT 2018, Part II, volume 11273 of Lecture
Notes in Computer Science, pages 3–34, Brisbane, Queensland, Australia,
December 2–6, 2018. Springer, Heidelberg, Germany.

[Unr10] Dominique Unruh. The impossibility of computationally sound xor. IACR
Cryptol. ePrint Arch., 2010.

https://eprint.iacr.org/2020/794

ASIACCS’22, May 30–June 3, 2022, Nagasaki, Japan Itsaka Rakotonirina, Miguel Ambrona, Alejandro Aguirre, and Gilles Barthe

A PROOF OF THE MAIN THEOREM
Main theorem. Let𝐷 = J𝑐1+· · ·+𝑐𝑛K be an algebraic distinguisher
for some non-branching distinguisher codes 𝑐𝑖 . Then the following
points are equivalent:

(i) 𝐷 is universal
(ii) the constraint systems Γ(𝑐1), . . . , Γ(𝑐𝑛) have no common, con-

sistent solutions Σ

A.1 Some notations
We interpret ground terms 𝑢 and ground frames Φ as distributions

of bitstrings J𝑢K and distributions of stores JΦK, respectively, where
a store is a mapping from axioms to bitstrings. We interpret:

• random group elements as uniformly sampled bitstrings

• symbols of Fun in the natural way

• symbols of Orcl∗
0
(resp. Orcl0 ∖Orcl∗

0
) as function uniformly sam-

pled from the set of all keyed permutations (resp. all functions)

of adequate domain.

We also write Pr [𝜙 ← D : 𝐸] to refer to the probability of the event
𝐸 conditioned by drawing a store 𝜙 with respect to the distribution

of stores D. Finally, given two distributions on stores D1 and D2,

we say that they are indistinguishable, written D1 ≈ D2, when for

all algorithms 𝑆 from stores to {0, 1} running in polynomial time

in the security parameter, we have that���Pr[𝜙 ← D1 : 𝑆 (𝜙) = 0] − Pr[𝜙 ← D2 : 𝑆 (𝜙) = 0]
���

is negligible. They are strongly distinguishable if there exists a poly-
nomial algorithm 𝑆 such that the above quantity is overwhelming.

A.2 First direction
Let us prove first the direction (i)⇒(ii) of the theorem, by con-

traposition. Consider a distinguisher 𝐷 = J𝑐1 + · · · + 𝑐𝑛K, with 𝑐𝑖

non branching for all 𝑖 , against a construction 𝐶𝑄
and assume that

there exists a solution Σ to each Γ(𝑐𝑖) that satisfies the consistency
requirement. Let us also call 𝜎1, . . . , 𝜎𝑛 the first-order solutions of

Σ in the constraint systems Γ(𝑐1), . . . , Γ(𝑐𝑛), respectively. Our goal
is to construct a simulator that wins the security game against 𝐷

with overwhelming probability. To obtain the desired conclusion,

it suffices to prove the following points:

Proposition A.1. Then we have:
(1) if 𝑢 =E 𝑣 then Pr [𝑒, 𝑓 ← J𝑢, 𝑣K : 𝑒 = 𝑓] is overwhelming
(2) if 𝑢 ≠E 𝑣 then Pr [𝑒, 𝑓 ← J𝑢, 𝑣K : 𝑒 = 𝑓] is negligible
(3) if 𝑢 is deducible from Φ, then there exists a polynomial time algo-

rithm 𝑆 from stores to bitstrings such that Pr [𝜙, 𝑒 ← JΦK, J𝑢K :

𝑆 (𝜙) = 𝑒] is overwhelming
(4) if Φ ∼ Ψ, then JΦK ≈ JΨK
(5) if Φ ̸∼ Ψ, then JΦK and JΨK are strongly distinguishable.

Item (4) is not needed obtaining the conclusion, but rather as an

intermediary argument. Once we obtain all these items, it suffices

to instantiate all equality and disequality constraints in each 𝑐𝑖 by

𝜎𝑖 ; they will all be satisfied by Items (3) and (1), and the deducibility

constraints as well by Item (2). Besides, in case some deducibility

constraints are solved by different second-order terms, we know by

consistency of Σ that the underlying frames are not statically equiv-

alent. In particular by Item (5) there exists a polynomial algorithm

for distinguishing the two simulator states with overwhelming prob-

abilities, allowing to answer the two queries differently. Regarding

the proof of these items, we have in the reference theory:

• (1) holds in a straightforward manner (the probability is even 1),

as all equations of the reference theory hold with probability 1

for their bitstring interpretations;

• (1)⇒(3) by [BCK09, Proposition 1];

• (1∧2)⇒(5) by [BCK09, Proposition 1];

• (4)⇒(2) by [BCK09, Proposition 2].

It therefore only remains to prove Item (4). For that we use the fol-

lowing characterisation, corresponding to [BCK09, Proposition 3]

and applicable to the reference theory by Item (1). The proposition

makes reference, given a frame Φ, to its ideal semantics JΦKideal:

Proposition A.2. If for every ground frame Φ, JΦK ≈ JΦKideal,
then Item (2) of Proposition (A.1) holds.

The precise definition of the distribution of stores JΦKideal is not
needed in our proofs: indeed, the theory of xor is specifically studied

in [BCK09], and the following result is already established (as a

combination of [BCK09, Theorem 6, Theorem 7, Proposition 8]):

Proposition A.3. If Φ is a frame that is only constructed from
random group elements, 0, and ⊕, then JΦK ≈ JΦKideal.

To conclude the whole proof, it therefore suffices to prove that for

all frames Φ in the reference theory, there exists a frame Ψ such that

JΦK ≈ JΨK and Φ only uses ⊕ as a non-constant function symbol.

For that it sufficies to design a procedure that removes gradually C
and C−1

symbols from Φ while keeping the same frame distribution

as the initial one. Since we consider ideal random functions, it

suffices to replace each subterm of Φ rooted with 𝑓 ∈ {C,C−1},
by fresh random group elements, where 𝑓 (𝑢) and 𝑓 (𝑣) should be

mapped to the same random group element when 𝑢 =E 𝑣 .

A.3 Converse direction
Now let 𝐷 = J𝑐1 + · · · + 𝑐𝑛K be a distinguisher, and 𝑆 be a simula-

tor winning against 𝐷 with overwhelming probability. We want

to construct a consistent solution to Γ(𝑐1), . . . , Γ(𝑐𝑛). Ae can as-

sume 𝑆 to be deterministic: if there exists a convex combination of

deterministic simulators winning with overwhelming probability

1 − Y ([) against 𝐷 , then one of these simulators wins with proba-

bility greater or equal than 1 − Y ([) against 𝐷 as well. Besides, we

can also argue that it suffices to consider simulators performing a

constant number of oracle queries. Indeed, up to the addition of

dummy deducibility constraints and constant entries to the frame,

we can always assume that each Γ(𝑐𝑖) = (Φ,D, 𝜑) is of the form
Φ = {ax1 ↦→ 𝑡1, . . . , ax𝑛 ↦→ 𝑡𝑛}
D = {𝑋1 : 1 ⊢? 𝑥1, . . . , 𝑋𝑛 : 𝑛 ⊢? 𝑥𝑛} .

Consider a simulator 𝑆 computing bitstrings 𝑥1, . . . , 𝑥𝑛 with access

to the corresponding substores sampled from JΦK. There are only
2
|𝜑 |+ |𝑡1 |

subterms of the system when the simulator computes 𝑥1,

therefore it has no effect on constraint satisfiability to perform

oracle calls on other terms; all other calls 𝑅(𝑡) can be replaced by

any bitstring without affecting constraint satisfiability. Assuming

the maximum number of calls have been performed, and taking

into account that 𝑡2 may have been instanciated by a computation

Symbolic synthesis of indifferentiability attacks ASIACCS’22, May 30–June 3, 2022, Nagasaki, Japan

𝜎 , its size may be up to |𝑡2𝜎 | ⩽ 𝑒 = |𝑡2 |2 |𝜑 |+ |𝑡1 |
. Applying the

same reasoning as for the first computation, here is then at most

2
2
|𝜑 |+|𝑡

1
|+𝑒

non-spurious oracle calls that may not be replacable by

constants. Iterating this process by induction allows us to conclude

that the simulator can be assumed to perform a bounded number

of oracle calls without loss of generality. In particular, writing 𝐴𝑖

the algorithm derived from 𝑆 to compute 𝑥𝑖 , the determinism and

constant number of oracle calls show that 𝐴𝑖 only samples a fixed

number of random values (one for each oracle call). Besides:

Proposition A.4. Let 𝑥1, . . . , 𝑥𝑛 be a constant number of values
sampled independently uniformly at random. Then, with overwhelm-
ing probability, the only subset 𝑃 ⊆ {𝑥1, . . . , 𝑥𝑛} of null sum is 𝑃 = ∅.

Proof. The proof can easily be obtained by recurrence as, assum-

ing 𝑥1, . . . , 𝑥𝑛−1 verify this property, the probability of a collision

(that is, that 𝑥𝑛 =
∑
𝑥 ∈𝑃 𝑥 for some subset 𝑃 ⊆ {𝑥1, . . . , 𝑥𝑛−1}) is

bounded by 2
𝑛−[

, which is negligible due to 𝑛 being constant. □

In particular, combining this result with the abovementioned

conclusion that the number of samplings of 𝑆 is constant, we obtain

that there is a negligible probability of collision between any linear

combination of computations of the simulators, unless the collision

holds with probability 1—which exactly means that a symbolic

solution verifying the same equalities as 𝑆 can be derived. We

therefore obtain the expected conclusion, which concludes the

proof.

	Abstract
	1 Introduction
	2 Indifferentiability from random
	2.1 Algorithms
	2.2 The indifferentiability game
	2.3 Universal differentiability
	2.4 Examples of constructions

	3 Algebraic distinguishers
	3.1 Symbolic model of group computations
	3.2 Reference theory
	3.3 Specifying algebraic distinguishers

	4 Symbolic analysis of universality
	4.1 Constraint systems
	4.2 Consistent solutions
	4.3 Main result
	4.4 Constraint solving

	5 Prototype and automated attacks
	5.1 Verifying attacks
	5.2 Synthesising attacks

	6 Discussion and extensions
	6.1 Collision finding
	6.2 Assumption of boundedness
	6.3 Extending the reference theory
	6.4 Proofs of universality

	7 Conclusion
	References
	A Proof of the main theorem
	A.1 Some notations
	A.2 First direction
	A.3 Converse direction

